If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x-9)=0
We add all the numbers together, and all the variables
2x^2-16x=0
a = 2; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·2·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*2}=\frac{32}{4} =8 $
| 2(x-(-4))=14 | | 5(x-3)+4x=-33 | | 36=x-2(x+4+x-2) | | t^2-(64/121)=0 | | 6=−4x+(−2) | | -3.1x+7-7.4x=1.5x-6x+9 | | 3x+x=159 | | X+3x=159 | | X•3x=159 | | 9x+2(x+1)=24 | | 3•3x=159 | | 11u-3u=40 | | 3(x+1)-2x=x-(2+3(3-x | | 3(×-7)=2x-16 | | -3(3x+4)=12x+12 | | 2/3+4/3x=3/2 | | -12=-77/2s | | P=4x+6 | | 2x+1=x^2+2.6x+.45 | | 6+x2=-9 | | 35÷(c+2)=7 | | x-120=6x+24 | | -45=x+(-7) | | 5x+72=2x+10 | | 1/2(6x−14)+5x=2−3x+8 | | 4-x+3x=x | | -4/9x=20 | | -6y=-5(1-y)-5 | | -9+y=17 | | X(22x)=22x+121 | | 2x-5+6=x+9 | | 10+x-1=4x+3 |